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Technical Abstract

With increasing demand for English language learning, there has been growth in popu-

larity of automated spoken language (SLA) systems. These systems take the speech from

a candidate and predict a grade for that candidate. Additionally, it is useful for the SLA

system to provide feedback to justify the grade given and to aid the learning progress

of the candidate. SLA systems are required to assess many aspects of the candidate’s

speech, ranging from pronunciation and intonation, to use of English and grammatical

structures. This work is primarily focused on what a candidate says, the word sequence

uttered, rather than how the words are pronounced. These text features have been found

to be the most important in grade prediction for SLA systems. As with many other areas

in speech and language processing, deep-learning is used in many state-of-the-art SLA

systems. This work examines two aspects of applying deep learning to SLA. First, rather

than using expert derived features, this work examines using deep-learning approaches to

replace these expert features. The second area is related to malpractice/cheating. Deep-

learning systems are known to be susceptible to adversarial attacks: these are small,

imperceptible, perturbations in the observation aimed at changing the system output. In

the context of SLA systems, adversarial attacks can be performed at a text level (small

changes in the words uttered) or in more general at a waveform level (perturbations in

the audio signal), where the aim is to dramatically improve the predicted grade.

A challenge for the design of SLA systems is the variable length nature of the audio input.

Traditional SLA systems use expert features, derived from the raw audio and the word

sequence output of an automatic speech recognition system (ASR), to form a fixed length

representation of the input. Typical audio features capture audio energy, intensity and

speaking rate, whilst textual features include unique words, standard perplexity scores

and simple word frequencies. A further advantage of these features is that they can



be used to provide comprehensive feedback to the candidate. As an alternative to the

feature-based SLA systems, this work explores the use of deep learning (neural) systems

to derive a fixed length representation of the input, meaning that the fixed length vector

is directly optimised for the task. This approach has the benefit of extracting information

from the input in a manner that is not pre-determined and can thus identify aspects of

the input not explicitly considered before in SLA systems.

The challenge that arises for neural systems is their increased susceptibility to adversarial

attacks. In this work, SLA systems that solely use the text output of the ASR system

(text based SLA) are subject to a universal adversarial attack. In real applications, SLA

systems are presented as black-box models that an adversary can query. Due to the

large number of queries required, it is impractical to expect an adversary to identify a

unique adversarial attack for each candidate’s response, motivating the consideration of a

universal black-box attack. In the context of text-based SLA systems, the form of attack

is a short sequence of words appended to any candidate’s standard response that causes an

increase in the output predicted grade. Although neural systems are vulnerable, this work

presents four detection schemes, including the use of perplexity scores, deep ensembles

and SLA specific off-topic response detection. However, the most successful detection

approach is based on detection shifts from the scores of a “traditional” Gaussian Process,

feature-based Grader. Therefore, the challenge of adversarial attacks for text-based neural

SLA systems can be overcome with well designed detection schemes.

A full SLA system considers not only the textual information output from an ASR but

also the raw audio waveform. Therefore, this work generalises the text-based adversarial

attacks to waveform adversarial attacks. As before, the challenge is with black-box SLA

systems, compounded in this case by the continuous nature of a waveform input - dis-

crete optimisation methods are no longer applicable. One approach to this is to use an

“evolutionary” process, where only the inputs and outputs to the system are considered.

It is revealed in this work, nonetheless, that even evolutionary processes struggle to find

strong waveform attacks.

The SLA systems in this work are used for multi-level prompt-response free speaking tests,

where candidates from a range of proficiency levels provide open responses to prompted

questions.
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Chapter 1

Introduction

Due to the increasing demand for English language learning, there has been a growth in

popularity of automated spoken language assessment (SLA) systems. The aim of a SLA

system is to predict a grade for a recorded candidate response. Moreover, it is useful for

the SLA system to provide feedback to aid the learning progress of the candidate. When

assigning a grade, human examiners take into account various aspects of the response,

encapsulated by the term “construct”. The construct captures the following ideas: task

achievement; coherence of the speech; use of grammar and vocabulary; the use of time

for the replies; candidate hesitations and pronunciation including stress and rhythm.

SLA systems seek to match the human predictions. The initial greatest challenge for

SLA systems is the variable length nature of the audio input. Any automated grading

system requires fixed size inputs, meaning the design of a SLA system requires a stage to

transform variable length inputs into a fixed length vector.

Traditional approaches to tackle the challenge of variable length inputs use feature-based

SLA systems. An automatic speech recognition (ASR) system converts the audio signal

into a textual transcription. Then, explicitly defined features can be extracted from the

textual output (e.g. number of unique words) and the original variable length audio (e.g.

waveform energy) to form a fixed length vector representation that can be passed through

a downstream Grader. The success of deep learning (neural) SLA systems in a number of

speech [13, 41] and natural language processing (NLP) [38, 45] tasks motivates the use of

neural systems as an alternative to the feature extraction process. Neural systems can be
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2

designed to use both the ASR output and the original audio signals and then transform

them into a fixed length vector via a deep structure.

However, the use of a deep learning approach to SLA brings with it a new challenge.

Neural networks are known to be inherently susceptible to mal-practice in the form of

adversarial attacks [39]. An adversarial attack is concerned with small, undetectable

perturbations in the input yielding undesired changes in the output. Beyond assessing

a candidate’s English speaking ability, it is necessary to ensure that a system is robust

to mal-practice. The integrity and reliability of an examination is threatened when there

exist means by which a candidate can take actions to cheat the system.

When an adversary has access to the the internal structure of a system (network archi-

tecture), the form of adversarial attack is termed a white-box attack [3]. However, it

is improbable that an adversary seeking to fool an automated spoken language assess-

ment system will have access to the internal workings of the system. Therefore, this

work restricts itself to black-box, targeted adversarial attacks, where the adversary has

no knowledge of the system (only access to input and output pairs of the model) and seeks

to fool the system into predicting a desired output. Black-box attacks are grouped into

query based approaches [6, 14, 46] and transfer based approaches [33, 31, 10]. Due to the

need for a large number of queries, the former approach is easy to defend against. The

transfer approach relies on similar structure models being susceptible to the same adver-

sarial samples [18]. Recent studies [24, 44, 15], have demonstrated successful transfer of

attacks, but only in situations where the networks are extremely similar in structure.

For SLA systems it is possible to attack either the audio signal (waveform attack) or the

word sequence uttered (text-based attack). As features, either expert or deep-learning

based, derived from the word-sequence are found to accurately predict the grade, this

work emphasises text-based attacks. A wide range of simple techniques [26, 17, 34] can

be employed to construct adversarial attacks. However, due to the discrete nature of

the input, the text sequence, gradient based adversarial attacks are difficult to imple-

ment [22]. A range of text based attacks and detection approaches have been described

in the literature [42, 1]. For SLA systems this text is derived from a speech recognition

system; thus the vocabulary is fixed. This means that attacks such as character-level

replacement [11, 47] cannot be used. In this work a greedy discrete search method for the
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adversarial attack is adopted. In particular a universal attack is considered [2], where a

single phrase is found that, for SLA, will increase the predicted score. Using a universal

attack reduces the opportunity for detection, as the attack needs to only be trained once

and just requires the candidate to learn a set phrase.

To overcome the challenge presented by the susceptibility of neural systems to adversarial

attacks, there exist a range of general approaches to attack detection [32, 27]. For text-

based attacks, this work examines the use of perplexity scores [22] and deep ensembles

[37, 27] approaches, as well as a SLA specific off-topic response detection approach [35].

Additionally, a detection approach based on a second, feature-based, SLA system is also

described.

An automated assessment system is only considered valid and the outputs meaningful

when the automated system employs similar assessment criteria as the human counter-

parts who designed the examination. Hence, it is necessary to consider not only text-based

SLA systems but also more complete systems that use the raw audio signals. As before,

neural approaches used for these complete SLA systems give rise to the challenge of threat-

ening adversarial attacks, where the attack is at a waveform level (on the audio signal). In

contrast to text-based attacks, waveform attacks exist in the continuous space of the orig-

inal audio signals. Therefore, simple discrete optimisation approaches are not applicable.

Often, for such black-box attacks, an evolutionary approach can be used [16]. However,

it can be challenging to find a useful initialisation point for evolutionary approaches.
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1.1 Thesis Outline

• Chapter 2 introduces the overall structure for an automated SLA system.

• Chapter 3 describes alternative architecture designs for the Grader stage of the

overall structure.

• Chapter 4 describes adversarial attacks and defences performed at a text level.

• Chapter 5 describes more generalised adversarial attacks performed at a waveform

level.

• Chapter 6 presents the results of experiments: baseline performance of Graders;

text adversarial attacks and waveform adversarial attacks.

• Chapter 7 presents high-level conclusions and directions for future work.



Chapter 2

Spoken Language Assessment

2.1 Assessment Structure

A SLA system predicts a grade (e.g. six point CEFR grade scale [7]) from a candidate’s

spoken response. Typically, automated SLA systems use a regression approach, where the

output is a score on a continuous scale that can be mapped to the fixed grade classifica-

tions. There are two main components to an automated SLA system: an ASR system and

a Grader. Figure 2.1 shows that with these components, a variable-length audio signal,

o1:n, is mapped to a single score, y, associated with a grade. The ASR system is necessary

for transforming an audio signal into a rich representation, w∗1:L, consisting of the variable

length word sequence w1:L and other useful information (section 2.2). The Grader G can

use both the variable length audio signal and ASR output to obtain the score (Equation

2.1).

Figure 2.1: Automated Spoken Language Assessment structure

5



2.2. Automatic Speech Recognition 6

y = G(o1:n, w
∗
1:L) (2.1)

2.2 Automatic Speech Recognition

The process of deriving a transcription (word sequence) w1:L, from the speech waveform

o1:n, is automatic speech recognition. As opposed to a single word sequence, state of the

art ASR systems output a set of N-best hypotheses. These hypotheses can form a directed

acyclic graph, termed a lattice (e.g. Figure 2.2), where arcs indicate hypothesised words

and nodes represent the start and end times of the outgoing and incoming words. This

lattice can then be used to output the one best sequence (w1:L), associated phones [8],

time stamps, word confidence scores and word durations (e.g. Figure 2.3). Thus, in a

SLA system, the Grader can use a rich input w∗1:L.

Figure 2.2: ASR Lattice Output.

2.3 Grader

As given in Equation 2.1, a Grader is required to output a single score y from variable

length inputs o1:n and w∗1:L. An obvious challenge for the automated systems is the variable
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Figure 2.3: Example ASR outputs: one best sequence, phones, timestamps and word
durations. Image sourced from ALTA Speech Team.

length nature of the inputs. This is traditionally overcome using feature-based Graders,

where explicit human derived features are used to define a fixed length vector. Figure 2.4

shows that in feature-based Graders, feature-extractors (FE) can be used to extract text

related features x(t) and audio features x(a), which can be concatenated to form a single

fixed length vector x. Equation 2.2 then shows how a feature Grader GF determines the

score y from the feature vector.

Figure 2.4: Automated Spoken Language Assessment with feature based grading.

y = GF (x) (2.2)

Beyond handling variable length inputs, these traditional feature based Graders are able

to provide informative feedback. The human derived features can be specifically chosen

to mimic human examiners (increases validity) and also then be used to identify the

weaknesses in a candidate’s speech. Typical audio features will capture a speaker’s fluency,
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audio fundamental frequency and audio energy, whilst text-based features may simply look

at distinct word frequencies. Features can also be calculated from the richer ASR output

to obtain features for time-aligned transcriptions at multiple levels, e.g. speaking rate.

Advanced Graders, avoiding the use of traditionally defined feature vectors, are discussed

in section 3.2.



Chapter 3

Grader

This section details the specific structures of Graders used in SLA systems. Initially, dif-

ferent forms of traditional feature-based Graders, introduced in section 2.3, are described.

Then, state of the art deep learning based Graders are discussed.

3.1 Feature-based Grader

3.1.1 GP Feature-based Grader

Any feature-based Grader uses x (from Figure 2.4) as a fixed length vector input. The

Grader GF (Equation 2.2) can be designed using a Gaussian Process (GP) system [40, 43].

A GP model is a non-parametric model used for regression. It can be understood as

modelling a distribution over functions. As there are no parameters to the model, all the

training points {x(s), y(s)}Ss=1, of S speakers are stored. When used in a Grader, the GP

system is to map a feature vector x to a score. A GP is defined over functions f and is

fully specified by its mean function m(x) (Equation 3.1) and covariance function k(x,x′)

(Equation 3.2), where E is the expectation operator.

m(x) = E[f(x)] (3.1)

9
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k(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (3.2)

Therefore, the entire Gaussian Process can be represented as a distribution as given in

equation 3.3.

f(x) ∼ GP(m(x), k(x,x′)) (3.3)

Predictions can then be made on an unseen data point x(∗) by computing the posterior

over f . The output is assumed to be Gaussian distributed around a mean f(x(∗)). For

the purpose of obtaining a single score for the Grader GF , this output mean is used.

3.1.2 DNN Feature-based Grader

An alternative to the GP system for the feature-based Grader is to use a Deep Neural

Net (DNN) system [29]. A DNN is a stack of fully connected layers, where each layer

applies a linear transformation to an input fixed length vector, followed by a non-linear

activation. Therefore, a DNN Grader can take the fixed length feature vector x as an

input and output a single value y to be interpreted as the score.

As with the GP Grader, a set of training data points {x(s), y(s)}Ss=1 are required for a DNN

feature-based Grader. However, the purpose of this training data is to perform supervised

training of the DNN model’s parameters θ. Training of a DNN system GF parameters is

typically performed by minimising the mean squared error (MSE) loss function L, given

in Equation 3.4. The optimal, learnt parameters θ̂ then precisely define the DNN system

to be used for any new data points x(∗), such that the predicted score is simply GF (x(∗); θ̂).

L(θ) =
S∑
s=1

(y(s) − GF (x(s);θ))2 (3.4)
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3.2 Deep Neural Grader

Deep learning can be used to eliminate the need for features to be explicitly defined, as

required for the feature-based Graders of section 3.1. However, once again, the challenge

of dealing with variable length inputs o1:n and w∗1:L (Figure 2.1) arises. Figure 3.1 proposes

a generic deep learning based (neural) structure to obtain a fixed length vector h from

the variable inputs, which can then be input to a neural Grader to obtain the score y.

It can be noted that this structure is similar to the feature-based grading structure of

Figure 2.4. However, now there are no longer human derived features x, but instead the

fixed length representation h is determined from a deep learning based structure that is

optimised in conjunction with a downstream neural Grader.

Figure 3.1: Automated Spoken Language Assessment with neural grading.

As is the case for the DNN feature-based Graders (section 3.1.2), neural Graders are

parameterised by θ. However, for neural Graders, these parameters also parameterise the

Neural systems (Figure 3.1) used to obtain the fixed length vector h. Hence, the training

data for supervised learning of neural Grader parameters, using MSE as the loss function,

takes the form of {o(s)1:n, w
∗(s)
1:L , y

(s)}Ss=1.

This section focuses on neural Graders that have been restricted to using solely the ASR

textual output w1:L (text neural Grader) or a richer form of the ASR textual output

w∗1:L (Audio text neural Grader). This work does also considers a phone based neural

Grader [20] in section 5 that uses the audio signal o1:n, as well as the rich ASR output

w∗1:L as its inputs.
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3.2.1 Text Neural Grader

If the deep neural Grader is restricted such that the Grader can only use the ASR textual

output to predict the grade, Equation 2.1 simplifies to Equation 3.5

y = G(w1:L) (3.5)

As mentioned, to overcome the challenge of variable length inputs, a dedicated system is

required to obtain the fixed length vector h. The design of the Neural Grader can be split

into three steps: embedding generation, multi-head attention and a DNN (3.2), where the

first two stages achieve the fixed length representation of the input.

Figure 3.2: Text Neural Grader Architecture.

The embedding generation stage takes the variable L-length word sequence w1:L and

creates L fixed size vectors v1:L. Often BERT [9] embedding generation perform better

than other approaches such as word2vec [30], as BERT is able to capture context. In the

second stage, the attention mechanism attends over the embeddings v1:L and combines

them linearly to produce a single fixed length embedding v̄. This linear combination is

shown in Equation 3.6. The coefficients α1:L (Equation 3.7) are found by performing the

softmax function (to ensure the coefficients are positive and sum to one) on the attention

scores s1:L, where the attention scores are computed using a combining function F of a

key, K1:L and the values, v1:L (Equation 3.8). Often self-attention is used, where the key

is also the value, such that Ki = vi, i ∈ (1, L).
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v̄ =
L∑
i=1

αivi (3.6)

αi = softmax(s1:L) =
exp(si)∑L
j=1 exp(sj)

(3.7)

si = F(Ki,vi) (3.8)

Multi-head attention is where the attention mechanism is performed in parallel Nh (num-

ber of heads) times. The outputs from each attention head can then be simply concate-

nated. This vector is then the fixed-length vector h that can be passed through a DNN

in the third stage required to obtain the score y.

3.2.2 Audio Text Neural Grader

The neural Grader described above in section 3.2.1 suffers from a lack of validity as

human examiners would use both textual and audio features in determining the grade.

Hence, the neural Grader can be extended to include audio information by using word

duration and word confidence scores (Figure 3.3), obtained from the richer ASR output

w∗1:L (section 2.2). The duration and confidence scores can be treated as separate two

dimensional vectors d1:L. The difference in the architecture is the use of a Recurrent

Neural Net (RNN) [36, 23], used to increase the dimension of d1:L. In its simplest form,

a RNN is made of a sequence of L units for the L inputs d1:L. Each unit, has a hidden

state qi, computed from linear transformations A of the current input and previous inputs

(Equation 3.9), with an added bias term b. Typically, bi-directional RNNs are used such

that there exist hidden states q̃1:L, computed from the inputs in reverse (Equation 3.10).

The ith output from the RNN can then simply be formed by concatenating qi and q̃i.

qi = A1di + A2qi−1 + b (3.9)
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q̃i = Ã1di + Ã2q̃i+1 + b̃ (3.10)

The variable length output of the RNN is then passed into an attention mechanism as

before (section 3.2.1) to obtain the fixed length representation h that is passed through

a DNN to obtain the score y.

Figure 3.3: Audio Text Neural Grader Architecture.



Chapter 4

Text Adversarial Attacks

It is expected that the textual content of a candidate’s speech has the most significant

contribution to the score prediction y. Therefore, it is useful to initially focus on text-

based Graders that only use the textual output w1:L of an ASR system. The parametric

neural textual Graders in section 3 are designed to learn the optimal model parameters

θ̂ to perform well on the training data {w(s)
1:L, y

(s)}Ss=1 of S speakers, where the mean

squared error loss function (defined for example in Equation 3.4) is used as the assessment

criterion. However, the blind optimisation approach of these neural Graders means that

they are susceptible to adversarial attack mal-practice. This section outlines an approach

to overcome this challenge by identifying and detecting universal adversarial attacks, i.e.

is there a single phrase that any candidate can utter along with their standard response to

guarantee an increase in the predicted grade from the trained Graders G with parameters

θ̂.

4.1 Attack Strategy

In literature, the general form of a targeted attack is

δ̂ = arg min
δ
{G(x+ δ) = t} s.t. H(x,x+ δ) < ε (4.1)

15
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where t is the required target outcome from the classifier G(), x is the observation to be

attacked, H() is some “distance” between the observation, and ε is a threshold at which

value the perturbation on the observation δ is deemed to be noticeable.

As this work considers adversarially attacking the text-based Grader of a free-speaking

spoken language assessment system, here rather than changing the classification outcome,

the task is to maximally increase the predicted score of the regression based Graders from

the ASR output, w1:L
1. The aim is to for example append to the end of a legitimate

response a short sequence of words that are in the vocabulary of the ASR system that

maximally increase the average score. As only universal attacks are considered, the metric

to maximise in adversarial attacks is the average (across speakers) score
∑S

s=1 y
(s). Thus

w1:L ⊕ δ(k) = w1, . . . , wn, w̃1, . . . , w̃k (4.2)

where the k word adversarial attack is w̃1, . . . , w̃k. The cost function to be optimised can

then be written as

δ̂(k) = arg max
δ∈Vk

{
S∑
s=1

G(w(s) ⊕ δ(k); θ̂)

}
(4.3)

where w(s) is the recognised word sequence for candidate s, θ̂ are the optimal Grader

parameters learnt (section 3.2) and Vk is the set of all k length word-sequences that

can be constructed using the ASR vocabulary V . The constraint that the adversarial

attack must comprise words in the vocabulary of the speech recognition system means

that character-based adversarial attacks for example are not possible.

4.1.1 Discrete Optimization

It is assumed that a single adversarial phrase of length k is to be used for all candidates

(universal attack). Though an adversarial attack could in theory be generated for each

candidate’s recognised word sequence, this is not a realistic scenario, as the given operating

mode for this form of attack is likely to be in the form of a black-box attack.

1Exactly how the adversarial output from the ASR system is produced is not considered. It is possible
that the candidate could simply speak the word sequence, assuming that the ASR is accurate, or the
ASR system itself may be adversarially attacked.
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As black-box adversarial attacks are most realistic for SLA systems, it is not possible to

optimise the attack using knowledge of the network architecture. In this work an explicit,

discrete optimisation approach is adopted. This is challenging as searching all possible

words in the vocabulary is expensive requiring a large number of queries. Additionally if

context-dependent word embeddings, such as BERT [9], are used then adding any word

alters the embeddings for all other words. To address this problem a two stage approach is

used. Initially a transfer-based approach is adopted, where a simple context-independent

word-embedding based substitute system [33] is used to select a subset of words from the

complete vocabulary 2. This subset can then be used to query the real system to select

the optimal word. This approach is felt to be realistic as only a single universal phrase is

needed for all speakers. The adversarial attack is generated in a “greedy” fashion where

δ̂(k) = arg max
δ∈Ṽ

{
S∑
s=1

G(w(s) ⊕ δ̂(k−1) ⊕ δ; θ̂)

}
(4.4)

where Ṽ is the subset vocabulary determined by the substitute system. The number of

system queries thus increases linearly with the length of the adversarial attack and the

size of the subset vocabulary. The attack defined has only considered appending a phrase

at the end of an utterance. In practice, appending to the end of a standard response is

the simplest for a candidate, but other positions can be considered.

4.2 Defence Strategy

The objective of this section is to explore a plethora of techniques that can be used to

identify textual inputs to a text based Grader that have been artificially manipulated (i.e.

an adversarial attack).

2Here knowledge of the vocabulary is assumed. In practice, provided the selected subset is large
enough, this knowledge is not necessary.
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4.2.1 Topic Relevance

One of the standard approaches to detecting malpractice, as well as detecting when a

candidate cannot generate an appropriate response to a prompt, is to use off-topic response

detection. In terms of malpractice the aim is to detect when a candidate is uttering some

pre-learnt phrase that is not related to the prompt. The task being considered here is more

challenging. Here it is assumed that the candidate can generate an appropriate response

w1:L. Thus the off-topic response detection extracts the impact of the adversarial attack

on the relevance. Therefore the detection mechanism is based on

P (rel|p, w1:L ⊕ w̃1:k) < β (4.5)

where p is the prompt associated with the response. The β defines a threshold that can

be tuned to achieve the best decision boundary.

Here a hierarchical attention based topic model (HATM) for off-topic spontaneous re-

sponse detection [28, 35] is proposed. In addition it is useful if the system is trained on

a held-out data set which contains prompt-response examples that cover all the prompts

seen in the test set.

4.2.2 Perplexity

The form of adversarial attack in Equation 4.3 imposes no constraints on the words being

appended to the original sequence. It is therefore possible that by using a language model

of “standard” non-native speakers of English it is possible to detect the adversarial attacks.

As it is not possible to guarantee the location of the attack it is necessary to consider

the average perplexity of the complete sequence, normalised by the sequence length. As

a refinement to this basic model, a grade-dependent language model can be used, which

is based on the predicted grade from the neural assessment system. The metric used to

assess whether an adversarial attack is being used is:

perp(w0:L ⊕ w̃1:k; ĝ) > β (4.6)
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where an initial sentence start symbol is added as w0, ĝ is the predicted grade from the

neural assessment system, and

perp(w0:L; ĝ) =
1

L

L∑
i=1

log(P (wi|w0:i−1; ĝ) (4.7)

The decision boundary threshold β can be altered to obtain the most appropriate decision

boundary.

It is common in many language modelling tasks that an LSTM-based recurrent neural

network language model is used3. As the vocabulary of the output is restricted to be the

vocabulary of the ASR system, there is no need to consider out-of-vocabulary words when

computing the perplexities.

4.2.3 Ensemble Diversity

When an ensemble of M models (typically using different seed initialisations) are used

for a Grader, the use of ensembling can be exploited in defending against adversarial

attacks. One approach for detecting adversarial attacks is to examine the consistency

of the ensemble of predictors. It is expected that inputs that have been manipulated

will result in less agreement in the output of the ensemble of models. Therefore, for the

regression task, the variance of the ensemble predictions can be used. Thus

1

M

M∑
i=1

[
G(w1:L; θ̂(i))

]2
−

[
1

M

M∑
i=1

G(w1:L; θ̂(i))

]2
> β (4.8)

The threshold β can be adjusted to select the most appropriate decision boundary.

4.2.4 GP Shift

Rather than using an ensemble of models based on the same form of model, it is possible to

use a model with a completely different configuration. For example, it is probable that a

neural Grader is susceptible to different types of adversarial phrases than a feature-based

3Example of a specific model is the CUED-RNNLM v1.1 toolkit [5]
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GP Grader (section 3.1.1). Thus it may be suitable to use a GP Grader for determining

an adversarial attack on a neural Grader. Figure 4.1 demonstrates that a benign input,

when adversarially attacked for a deep neural Grader to form a malicious input, is likely

to result in a larger increase in the deep neural prediction than the GP prediction. Thus,

the distance to the Line Of Best (LOB) fit, parallel to the deep neural prediction axis, is

expected to increase. Therefore, a simple approach can be adopted based on:

G(w1:L; θ̂)− map(Ggp(φ(w1:n))) > β (4.9)

where φ() is the feature extraction process for the word-sequence. Rather than using

the raw predicted GP-score, a mapped version is used based on a linear mapping (LOB),

map() from the GP-score to the neural assessment score estimated on a held-out data set.

This should handle, for example, the mismatch in the average scores from the two forms of

grading. As in other detection approaches, the decision boundary can be adjusted using

the threshold β.

Figure 4.1: Schematic of impact of adversarial attack on Deep Neural Grader vs impact
on GP Grader.



Chapter 5

Waveform Adversarial Attacks

Waveform adversarial attacks can be understood as a generalisation of the text adversarial

attacks. Instead of a attacking a Grader that only takes the word sequence w1:L as the

input, the attack concerns modifying the variable length audio input o1:n. The greatest

challenge for these attacks is that the SLA systems are treated as black-box systems,

meaning only the input, output pairs {o(s)1:n, y
s}Ss=1 are available. Thus, it is assumed that

the optimised model parameters θ̂ are fixed.

5.1 Universal Waveform Attack

Waveform adversarial attacks are concerned with manipulating the raw audio waveform

o1:n inputs to an ASR system or directly to a Grader G, where the aim is to make an

imperceptible (to human ears) change to the input, whilst causing an increase in the

output predicted score (consistent with Equation 4.1). In a similar structure to the text

based adversarial attack (Equation 4.2), the change in the original raw audio segment o1:n

is from an adversarial noise perturbation δ (Equation 5.1).

o1:n ⊕ δ(n) = o1 + δ1, . . . , on + δn (5.1)

As the adversarial attack has to be universal, the same noise signal has to be added to

21
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any original audio segment. However, a challenge is that the input audio segments have a

variable length n. Therefore, it simpler that δ(n) is not directly learnt, but a shorter fixed

length subsection δ(k) is learnt instead, where the signal δ(n) is formed by periodically

repeating δ(k), with length k timeframes.

With knowledge of the underlying fixed length signal δ(k), the objective of the waveform

adversarial attack can be expressed in terms of the noise signal δ(n), which is optimised

to maximise the average predicted score across all S different speakers (candidates), as

shown in Equation 5.12. The ASR() function represents the mapping from an audio signal

o1:n to a rich textual output w∗1:L (Figure 2.1).

δ̂ = arg max
δ

{
S∑
s=1

G
(
o(s) ⊕ δ, ASR(o(s) ⊕ δ); θ̂

)}
(5.2)

5.2 Evolutionary Attack

The greatest challenge for waveform adversarial attacks is that the SLA systems are

treated as a black-box. One approach to attacking a black-box Grader is to use an

evolutionary attack [16]. The evolutionary approach attempts to approximate the optimal

update direction of a gradient approach by treating each training cycle as a generation,

with the fittest members passing their genes to the next generation. Each member i of

the population is a noise subsection δ(k) and fitness is measured by ability of a member to

satisfy two objective functions: the adversarial sample must maximise acoustic similarity

(imperceptible attack) and the adversarial attack must maximise the output predicted

score.

The members of the population are often initialised randomly from a Gaussian distri-

bution. After initialisation, the population is passes through multiple stages cyclically

(Figure 5.1). The fitness evaluation stage uses two distinct fitness functions f1 and f2

as a quantitative measure of the two objectives (above) to be satisfied. The first func-

tion f1 gives the Euclidean distance between the original and manipulated audio signals

in a transformed space H (Equation 5.3). Often Mel Frequency Cepstral Coefficients

(MFCCs) [25] are the choice of transformed space for audio signals. Therefore, the objec-
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Figure 5.1: Evolutionary Approach to Black-box Adversarial Attack.

tive is to minimise f1 for greatest acoustic similarity.

f1(o⊕ δ(n),o) = ||H(o⊕ δ(n))−H(o)||2 (5.3)

The second function f2 is simply set to be the output score from the Grader (Equation

5.4). Hence, to maximise the output score, f2 has to be maximised.

f2(o⊕ δ(n)) = G
(
o⊕ δ(n), ASR(o⊕ δ(n)); θ̂

)
(5.4)

Both functions can be optimised simultaneously. The mating pool selection stage is

concerned with selecting the pairs that will mate to create the next generation. The Multi-

Objective Genetic Algorithm (MOGA) [12] offers three schemes to select appropriate

pairs. This stage seeks to generate children from the parent pairs. A simple crossover

strategy [16] is where each parent generates three children: one child similar to one

parent each and the third acquires the parents characteristics in equal proportion. It

is important to note that all operations are performed in the raw audio domain. To

introduce robustness and maintain diversity in the population, probabilistic mutation is

used, where a random value is added to every gene (single value in the noise signal) with

a probability probm. The cycle is repeated till no significant improvement is seen in the

fitness of the population, at which point a member of the population is randomly selected
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as the optimal adversarial noise.

5.3 Guided Initialisation Gradient Attack

Due to the high dimensionality and complex nature of the input space, it is difficult to

find a useful initialisation point for a black-box attack of a Grader using waveforms as

the input. Therefore, it is natural to consider a separate simpler model that can mimic

the performance of the black-box model. As the simpler model can be built in-house,

the adversary has access to its internal workings and can therefore employ a white-box

attack. Once the optimal adversarial waveform is obtained for the simpler model, this can

be used as a useful initialisation point for the evolutionary attack on the more complex

black-box Grader.

When designing the simpler model, it is useful to use a construct that contains a pipeline

of differentiable stages that allow gradient based approaches to be used to learn the ad-

versarial noise vector. Gradient based approaches are superior to evolutionary approaches

because the gradient gives the optimal search direction for optimization. Therefore, as

most Graders use a non-differentiable ASR stage, the gradient based attack has to be

conducted in a manner that freezes the ASR output, exploiting the assumption that the

adversarial attack causes such small perturbations there is no impact on the ASR output.

Hence, the frozen ASR output means Equation 5.12 reduces to Equation 5.5.

δ̂ = arg max
δ

{
S∑
s=1

G
(
o(s) ⊕ δ, ASR(o(s)); θ̂

)}
(5.5)

This work uses a shallow phone distance Grader trained on MFCC features [19] as the

simpler model of choice. The transformation of a segment of a waveform o1:n = o into

a MFCC vector z can be separated into three stages, where only the first stage is a

linear transformation, taking inputs to the linear spectral space. The stages are shown in

Equation 5.6.
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o −−−−−→
Filter, L()

z̆x
Linear Spectral Space

−−→
log()

z̃ −−−−→
DCT, C

z (5.6)

To reduce the search space for the adversarial attack, the universal adversarial noise δ(spec)

can be found in the linear spectral space. It is necessary that the spectral space is linear,

so that the universal noise in the spectral space can pass though an inverse filter L−1 to

obtain a universal adversarial noise in the audio space (Equation 5.7).

δ = L−1
(
δ(spec)

)
(5.7)

The model uses shallow phone distance features as its input. For each speaker s and

each of the 47 phones p, the MFCC vector is modelled as a simple multi-variate Gaussian

distribution. The covariance matrix is of little interest. Only the mean vector µ(sp) is

of interest. Having computed all the phone mean vectors (in the MFCC space) for a

particular speaker, the phone distance features can be computed, as shown in Equation

5.8.

m
(s)
ij = D(µ(si),µ(sj)) (5.8)

Using the 472 phone distances, a phone matrix M can be constructed and this is used to

predict the score y(s) by the model G(), as given in Equation 5.9, where θ̂ are the fixed

model parameters optimised on a separate training dataset (using MSE as in Equation

3.4). It is useful to note that M essentially is a fixed length representation h of the

variable length input o1:n.

y(s) = G(M(s); θ̂) (5.9)

The objective of the universal adversarial attack is to find a noise vector δ̂(spec), to be added
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in the linear spectral space, independent of the speaker, to maximise average predicted

score across all the speakers. Equation 5.10 shows how the noise vector can be added to

a particular phone mean in the linear spectral space.

µ(sp)
a = C log

(
exp

(
C−1µ(sp)

)
+ δ̂(spec)

)
(5.10)

Equation 5.11 then shows how the adversarially attacked phone mean vectors can be used

to compute the adversarially attacked phone-distance matrix M
(s)
a for each speaker.

M(s)
a =M

(
µ(s1), . . . ,µ(sP ), δ̂(spec)

)
(5.11)

Therefore, the overall objective is summarised by Equation 5.12.

δ̂(spec) = arg max
δ(spec)

{
S∑
s=1

G
(
M
(
µ(s1), . . . ,µ(sP ), δ(spec)

)
; θ̂
)}

(5.12)



Chapter 6

Experimental Results

6.1 Experimental Setup

6.1.1 Datasets

Experiments were run for multi-level prompt-response free speaking tests i.e. candidates

from a range of proficiency levels provide open responses to prompted questions. Based on

this audio input (for which the transcriptions are unknown) the assessment systems must

predict a score of 0-6 corresponding to the 6 CEFR [7] grades. Particularly for practice

scenarios, it is useful for the learner to receive a separate score for each section of the test.

The dataset consists of 21 responses divided into 5 sections (A-E). For this work a single

section (C) of the Linguaskill-Business (L-Bus) test [4] is considered in greater detail,

where candidates can talk for up to 60 seconds on a prompted topic. The training and

test data consists of non-native English spoken by candidates from 6 L1s (first language).

A held-out evaluation set of 202 speakers, approximately balanced for L1 and across the

CEFR grades was used for testing. For this data the ASR system had an average word

error rate of 19.5%. Reference scores were provided by expert graders. The Graders were

trained on a set of ∼900 speakers from the same set of L1s, using operational grader

reference scores.

For the purpose of comparison, Graders trained on an alternative dataset, Linguaskill-

27
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General (L-Gen) are also considered. This structure of L-Gen data is similar to L-Bus,

where the differences are due to the style of prompts. Average response lengths for both

datasets are approximately 80 words.

6.1.2 Assessment Metrics

The performance of the SLA Graders is measured against four metrics: Pearson Cor-

relation Coefficient (PCC); Root Mean Squared Error (RMSE); percentage within half

a grade (<0.5) and percentage within one grade (<1.0), where the reference candidate

CEFR grades are from expert human examiners.

The PCC indicates the linear correlation between the predicted and reference scores,

where +1 is a perfect positive correlation and 0 is no correlation. The RMSE is simply the

average (across all candidate data points) of the error (between prediction and reference

score) squared. This is the metric used in the loss function to train all the Graders. The

percentage within half and full grade metrics indicate what percentage of candidates are

likely to be classified correctly by the Grader.

The adversarial attack impacts are best measured by the increase in the average (across

candidates) predicted score. To assess the success of the adversarial attack detection

processes, precision-recall curves are used. For the binary classification task of identifying

an input as adversarially attacked (or not), the precision is the ratio of true-positive

(correctly classified as adversarially attacked) over the total identified as adversarially

attacked (Equation 6.1). Recall, however, gives the ratio of the true-positive to the total

actual number of adversarially attacked inputs (Equation 6.2). For a given classification

boundary threshold β, the precision and recall values can be computed. The precision-

recall curves can then be produced by varying β.

Precision =
True Positive

True Positive + False Positive
(6.1)

Recall =
True Positive

True Positive + False Negative
(6.2)
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A single point summary of precision recall-curves can be obtained using a Fk score (Equa-

tion 6.3), where k weighs the importance of precision over recall. This works uses a F0.5

score.

Fk =
(1 + k2)× Precision× Recall

(k2 × Precision) + Recall
(6.3)

6.2 Experiments and Discussion

6.2.1 Baseline

The first set of experiments determine the baseline performance of different Graders,

ranging from feature-based GP Graders (section 3.1.1) to neural Graders using either

text, Neurtxt
1 (section 3.2.1); pronunciation, Neurpron [20]; rhythm, Neurrytm [21] and

text+duration+confidence, Neurtxt+dc (section 3.2.2). For the feature-based Graders, two

types of GP Graders are considered: a GP system using all audio and text features,

GPall [43] and a text-based GP system, GPtxt using only seven features based on the

ASR transcript. Different linear combinations of these graders are considered to establish

which Graders contribute most to the overall performance. All neural Grader ensembles

are obtained by using 10 different seed initialisations during training and the resulting 10

ensembles’ outputs simply averaged to get the ensemble prediction.

Table 6.1 presents the performance of text-based, audio text-based, rhythm-based and

pronunciation based neural systems, as well as versions of a feature-based GP system

to the overall task of grading speakers based on responses to 21 questions in 5 sections

(A-E). When combining the neural Graders, Neurtxt+dc is not included as its structure is

extremely similar to Neurtxt with marginal performance improvements. Combining the

neural systems in a linearly optimal manner yields the best results - a Pearson Correla-

tion Coefficient (PCC) of 0.884 is achieved, where the biggest contributor to the output

prediction is the Neurtxt system. For the feature based Graders, GPtxt performs nearly

as well as GPall, despite using only the text features. Hence, the results of Table 6.1

1Model Available at: https://github.com/rainavyas/NeurTxtGrader

https://github.com/rainavyas/NeurTxtGrader
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motivate attacking the text-based systems when seeking to obtain an adversarial sample

for a complete (combination of all systems) spoken language assessment system.

System PCC RMSE <0.5 <1.0

Neurtxt 0.878 0.587 66.8 91.4
Neurtxt+dc 0.883 0.564 70.3 91.9
Neurpron 0.819 0.699 54.1 85.5
Neurrytm 0.815 0.697 55.9 86.4
Neur{txt⊕pron⊕rytm}
α = [0.83, 0.04, 0.13] 0.884 0.581 67.0 90.5
GPtxt 0.855 0.643 60.4 87.7
GPall 0.881 0.606 60.5 91.4

Table 6.1: Performance of different ensemble systems trained on all sections (A-E) of
L-Bus. α gives the linear combination coefficients.

Grader Score PCC RMSE <0.5 <1.0

GPtxt 3.88 0.749 0.786 54.0 80.7
Neurtxt 3.49

±0.14
0.744
±0.01

0.818
±0.06

48.9
±6.55

79.4
±2.86

-ensemble 3.49 0.749 0.727 59.9 83.2

GPtxt⊕Neurtxt 3.69 0.774 0.678 61.4 83.7

Table 6.2: Baseline performance (on section C of L-Bus) of the text-based feature and
deep neural Graders. ± indicates the standard deviation.

Table 6.2 shows the baseline performance of the deep neural model and the feature-

based GP model on a single part of the examination. The PCCs for each system are very

consistent. A wider spread in predictions can be observed for the GP Grader with a higher

RMSE and lower percentages of scores within 0.5 (<0.5) and 1.0 (<1.0) of the reference

scores i.e. within half and one grade. The average score for the GP Grader (3.88) is also

the most offset to the reference average of 3.54, with the neural-ensemble Grader having

the closest match (3.49). Combining the GP and neural-ensemble Graders, GP⊕Neural,

yielded the best overall performance, suggesting that these systems are complementary.

6.2.2 Text Adversarial Attack

To construct the adversarial attack only one of the members of the ensemble of the neural

Grader, Neurtxt was used. It was found that this attack transferred to all members of

the ensemble, as expected from the relatively small standard deviation (Table 6.2). As



6.2. Experiments and Discussion 31

shown in Equation 4.4, a greedy search is performed over a subset vocabulary. The subset

vocabulary (experimentation revealed 100 was an adequate size for the subset vocabulary)

is generated from a greedy search over the ASR vocabulary on a substitute system: a text

neural Grader using word2vec [30] at the word embedding stage. The attack was used

to obtain an adversarial phrase of increasing lengths k, until the output predicted score

saturated. This adversarial phrase was found for the neural model trained on section C of

the L-Bus dataset. Figure 6.1 shows that saturation occurs at k = 20, where on average

the output score is increased by 2.2 (on a scale of 0-6). Figure 6.1 also shows how well the

attack transfers to the same model trained on a different dataset (L-Gen) and a different

section (D). The increase of more than a grade in 20 words for both these models suggests

that this attack phrase has some universal properties that transfer well.

Figure 6.1: Transferability of k-word attack phrase found for the neural model trained on
L-Bus, section C

This work carries out a more in-depth analysis of a shorter (more realistic) adversarial

phrase length of 6 words. A greedy search was used on the neural Grader to find an

adversarial phrase of 6 words in length2. Similarly, a 6 word adversarial phrase was

determined for the GP Grader3. Table 6.3 shows that both the GP and Neural adversarial

attacks’ word sequences, targeted at the corresponding assessment system, significantly

increased the score. For the neural assessment system, however, the increase after adding

six words was over twice that of the GP based system. The impact of the adversarial

2Neural adversarial attack phrase: OFFENSIVELY OBESE ASTRONAUTS AMAZINGLY CRITICIZES AMAZINGLY.
3GP adversarial attack phrase: QUITE PRETTY INDIVIDUALLY INTO PHYSICALLY QUITE.
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attack phrases is also reported for a DNN-based feature Grader, DNNtxt [29] (described in

section 3.1.2), using the same 7 text features as GPtxt. Interestingly the neural adversarial

attack yielded only a small increase in the average score in the latter for both the GP

and DNN Graders. This indicates that the transferability of the attack from the neural

assessment system to the feature-based systems is small.

Grader (+adv) Score PCC RMSE <0.5 <1.0

GPtxt 3.88 0.749 0.786 54.0 80.7
+ GP-adv 4.27 0.744 1.037 30.7 68.3
+ NEUR-adv 4.02 0.749 0.863 49.0 76.7
DNNtxt 3.70 0.750 0.732 56.9 83.7
+ GP-adv 4.23 0.691 1.038 31.7 72.3
+ NEUR-adv 3.84 0.750 0.772 53.0 82.7
Neurtxt 3.49 0.749 0.727 59.9 83.2
+ GP-adv 3.54 0.753 0.702 58.4 83.2
+ NEUR-adv 4.33 0.700 1.110 27.2 62.9

Table 6.3: Impact of the 6 word Neural adversarial attack NEUR-adv or GP adversarial attack
GP-adv on different Graders.

Table 6.3 also presents the impact of the adversarial attacks on standard performance

metrics. For these experiments the GP and ensembles of DNNs and neural systems were

used. As expected, the largest score gain, and associated impact on performance, is from

attacking the neural assessment system. The percentage of candidates with scores within

one grade-level decreased from 83.2% to 62.9% as the scores were pushed up across the

grade range. It is interesting that the GP attack transfers well to the DNN-based system,

whereas the neural attack only yields a small change in performance.

As the penalty for incorrectly detecting an adversarial attack is high, precision is more

important than recall for this task. Thus F0.5 is used to give a single point summary

of the system performance. Figure 6.2 shows the precision and recall curves and the

optimal F0.5 value for the four detection schemes. As expected, the performance of the

off-topic response detection is the worst, as the short adversarial attack is appended to

a valid, on-topic response. Although ensemble diversity, and perplexity, show reasonable

performance, the best performing detection scheme is GP shift.

The superior performance of the GP shift detection scheme is further verified by Table 6.4,

where a F0.5 score of 0.955 can be achieved for a 20 word adversarial attack. It is interesting

to note that both topic relevance and ensemble diversity F0.5 scores have worsened from
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Figure 6.2: Precision-Recall curves for different detection approaches for the Neural
Grader with 6 NEUR-adv words

the 6 word adversarial attack. Topic relevance may suffer due to inherent length biases

in the model used. To understand the failure of ensemble diversity for the longer phrase,

it is useful to refer to the gradients of the curves in Figure 6.1. As the curves saturate, it

is only expected that the absolute variation in ensemble prediction decreases, rendering

ensemble diversity a meaningless detection scheme for longer adversarial phrases.

Detection Scheme F0.5 Precision Recall

GP Shift 0.955 0.983 0.856
Perplexity 0.906 0.935 0.806
Topic Relevance 0.556 0.500 1.0
Ensemble Diversity 0.558 0.502 1.0

Table 6.4: Performance of different detection schemes on the 20 NEUR-adv adversarial words
for the Neural grader.

One of the features that is used in th featured-based GP Grader is the set of five grade-

dependent language model scores. These have the same form as the perplexity detection

system and thus the GP Grader adversarial attack GP-adv is expected to be harder to

detect using perplexity. This is the case as the F0.5 score drops from 0.74 to 0.634.

The current adversarial attack is based on appending the adversarial attack to the end

of the response. In order to assess the transferability of this attack to different positions,

the same 6 word phrase was appended to the beginning and to the middle of the original
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response for the NEUR-adv attack. This yielded average score values of 4.08 and 4.13 respec-

tively, compared to appending to the end of 4.33. Thus a large grade increase of greater

than half a grade was possible even for these sub-optimal attacks for the neural Grader.

Grader (+adv) Score PCC RMSE <0.5 <1.0

Neurtxt 3.49 0.749 0.727 59.9 83.2
+ NEUR-adv 4.33 0.700 1.110 27.2 62.9
+ GP-Det-adv 4.15 0.715 0.975 35.1 69.8
+ PERP-Det-adv 4.22 0.711 1.020 32.7 66.3

Table 6.5: Detection evasion attacks on the neural Grader.

It is possible to attack a system with knowledge of the defence mechanism. Attacks were

generated independently to evade the GP Shift (GP-Det-adv) and perplexity (PERP-Det-

adv) detection processes by ensuring that the final GP shift and perplexity were less than

the corresponding thresholds used to generate the F0.5 scores in Figure 6.2. These attacks

(Table 6.5) yield lower increases in the average score (4.15 and 4.22 correspondingly) than

the unconstrained NEUR-adv attack. It is of course possible to operate at lower thresholds

for the detection evasion attacks, or combine the detection approaches, to further reduce

the impact of adversarial attacks.

6.2.3 Waveform Adversarial Attack

Finally, waveform adversarial attacks are designed to be carried out on a deep-phone

neural Grader [20]. However, to perform the initialisation of the evolutionary attack, a

white-box gradient based attack is carried out on a simpler shallow-phone neural Grader

(described in section 5.3).

An initial, naive attempt was made on attacking a black-box deep-phone neural Grader [20]

using the default evolutionary approach (section 5.2). However, experiments revealed that

the waveform search space was too large and complex to discover any adversarial attacks

that had a significant impact on the predicted score. Therefore, as dictated by Equation

5.12, a white-box gradient based attack was carried out on a simpler shallow phone dis-

tance model (described in section 5.3), with the aim of transferring this attack to be the

initialisation point for the deep phone distance model.

It is important to note that initial experiments yielded a negative adversarial noise in the
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spectral space, which has no meaning. Therefore, the training algorithm was adjusted

to exponentiate the noise vector to ensure it remained positive. Table 6.6 reveals that

despite training for 100 epochs, the average score is increased by less than 0.1. This

suggests that this structure of a phone distance model is inherently robust against this

form of adversarial attack. Hence, it is only natural to conclude that the black-box, deep-

phone Grader, although likely to be more susceptible to attacks due to its deep structure,

is also relatively robust to adversarial attacks that attempt to use universal noise vectors

to modify the inputs.

Epoch Increase in Avg. Score

0 0.00
1 0.04
2 0.07
10 0.08
20 0.07
50 0.08
100 0.08

Table 6.6: Training of 24-dim spectral noise vector in gradient-based waveform attack of
shallow phone-distance Grader.



Chapter 7

Conclusions and Future Work

Driven in part by the performance improvements that have come from deep learning

based approaches, automated Spoken Language Assessment (SLA) systems have seen

an increase in their popularity and demand. This work has considered in specific SLA

systems for a multi-level prompt-response free speaking test, Linguaskill-Business.

The challenge for SLA systems stems from the variable length nature of a candidate’s audio

recording. This challenge is overcome through the use of traditional feature-based Graders

and design of more state of the art deep learning (neural) based Graders. Experiments

reveal that for an overall grading system, whether it is feature based or neural, it is the

text-based Graders that contribute significantly to the strong performance of the SLA

systems. Therefore, this work focuses on text based Graders predominantly.

In contrast to the feature-based Graders, it is known that neural Graders are susceptible to

adversarial attacks and thus it is important to investigate the robustness of these Graders.

Specifically for text-based neural Graders, a simple, universal black-box adversarial attack

is examined. The aim is to generate a single, universal phrase that when uttered at the

end of a valid response to a prompt will improve the performance of any candidate. The

work shows that spoken language assessment systems are indeed susceptible to these

universal attacks. Even a short six word phrase can yield nearly a one point increase in

the average grade for the test speakers. The impact of adversarial attacks for these neural

systems is compared to the more traditional feature-based systems, which as expected

36
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are found to be less sensitive to adversarial attacks. Four defence mechanisms, including

the standard perplexity score, as well as assessment specific schemes, are also discussed.

These can accurately detect attacks, but can also be used as part of the adversarial attack

generation, if the form of detection is known.

To account for more a complete SLA system that uses both textual information and the

raw audio signal, a waveform attack is considered for a deep phone distance model, treated

as a non-differentiable black-box system. Using an evolutionary approach to learn the

universal adversarial noise yields an insignificant increase in the average predicted score.

Therefore, a shallow phone distance model is chosen as a simple model to be subject to a

white-box attack, with the intention of using this to initialise the attack for the deep phone

distance model. However, surprisingly, this attack yields little improvements, suggesting

that phone distance models are relatively robust to such universal waveform adversarial

attacks.

Future work is useful for identifying other non-text based deep neural models, such as

rhythm based models, that are susceptible to waveform adversarial attacks. If such sys-

tems are susceptible to these attacks, it is necessary to determine appropriate detection

methods. Initials experiments can explore the use of qualitative surveys with human ex-

aminers to detect the manipulated input audio signals. Other detection processes can

include the use of the ASR output word confidence scores to indicate adversarial attacks

or seek to learn a metric that measures the naturalness of audio signals, to mimic the

use of perplexity in the text attacks. Finally, adversarial training can be explored as a

method to preemptively increase the robustness of systems.
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Appendix A

A.1 Risk Assessment

This project was entirely computational. The risk is excessive computer use and the

adoption of a detrimental posture. The first risk was minimised through a strict policy of

regular breaks. The second risk was reduced by obeying standard seating posture guide-

lines. Further, the workstation was setup to conform with the Display Screen Equipment

regulations.

A.2 Log Book

In this project, an online log book was maintained through weekly reports submitted at

http://mi.eng.cam.ac.uk/raven/babel/UGrad/.
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