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» 5 different datasets (4 classification, 1 regression).

1. Introduction

» Deep learning systems are susceptible to adversarial attacks: small
changes at an input can cause large, undesired changes at the output.

» The characteristics of inputs in different domains are very different: » Different Transformer-based systems trained for each task.

# Train # Test # Classes Transformer Performance
IMAGE } TEXT } IMDh 25,000 25,000 2 BERT Acc: 93.8%
h h m 16,000 2000 6 ELECTRA Acc: 93.3%
: : PIEy 120,000 7600 4 BERT Acc: 94.5% Classification
continuous discrete Dé?"—-@aa 560,000 70,000 14 ELECTRA Acc: 99.2%
Linguaskill** 900 202 1 BERT PCC: 0.749 } Regression

» Hence, will adversarial attack behaviour differ for image processing and
natural language processing (NLP) systems?

» Probability Weighted Word Saliency (PWWS) used for substitution.

» A Greedy Universal approach used for concatenation attacks.
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» Should detection approaches then be tailored to the type of input?

» This work introduces a residue-based detection approach to specifically
exploit the characteristics of inputs to NLP systems.

» F1 Score measures success of each detector.
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» |Is residue in the central PCA eigenvector components of the encoder?
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» This work focuses on detection. Methods from the image and text
domain are used as baselines:
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» Does detectable residue only exist for discrete input domains?

\_* Uncertainty (Unc) \_*_Perplexity (Perp) J » Project Gradient Descent attack for continuous space.
: : » Substitution attack for discrete space.
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» We make two hypotheses:

1. Adversarial samples in an encoder embedding space result in larger
components (residue) in central PCA eigenvector components than
original examples.

2. The residue is only significant (detectable) for systems operating on
discrete data (e.g. NLP systems).

» This motivates a simple linear classifier as an adversarial attack detector
in the encoder embedding space, Fen(x) with parameters W, b,
P(adv|x) = (W Feu(x) + b)

sequential.

» Residue-detection introduced in this work is found to be a powerful
detection approach for NLP systems, where inputs are discrete and

8. Conclusions

» Adversarial attack behaviour in systems with discrete inputs (text) is
different than systems with continuous inputs (images).

» Adversarial attack detection systems should be tailored to the input form.



